多層押出成形用 マルチマニフォールドダイの 最適化解析

Optimization Analysis of Multi Manifold Die for Co-extrusion

2014/6/4

株式会社HASL

○谷藤 眞一郎 吉川 秀雄株式会社プラスチック工学研究所

鬼防 崇 辰巳 昌典

AGENDA

口研究の背景

・研究目的

- 口最適化熱流動解析技術
 - Trial Search Method
 - 2.5D/3D hybrid FEM
- ロマルチマニフォールドダイの最適化解析
 - ・現行条件解析
 - ・最適化条件解析

□まとめ

・成果要約

□研究の背景

マルチマニフォールドダイ: 多層押出物各層厚の均一化に利点を有する押出装置

Fig.1 Layer configuration of multi manifold die

「ダイ最適形状(流出速の均一化を保障する条件)*):

Material :

$$\eta = \eta_0 \dot{\gamma}^{n-1}$$

Optimized radius distribution of manifold :

$$R(x) = R(0) \left(1 - \frac{x}{W}\right)^{\frac{n}{3n+1}}$$

Optimized slope angle of manifold :

$$\sin\phi = \left(\frac{3n+1}{2\pi(2n+1)}\right)^n \frac{W^n H_p^{2n+1}}{R(0)^{3n+1}}$$

Fig.2 Optimization shape of coat hanger die

研究目的:

多層マルチマニフォールドダイで製造される多層押出物層 厚を均一化するための上流側Tダイの最適制御条件を実用的に 推定する最適化熱流動解析技術の構築

実用的とは,

- ・技術の運用が容易
- ・計算速度が速い
- ・解析コストが低い
- ・推定される最適条件が有益

□最適化熱流動解析技術 Trial Search Method

<u>設計変数 (Design variable)</u>: 「ダイチョーク領域の TD方向流路クリアランス分布

<u>目的関数(Objective function):</u> Tダイ流出速変動量

Design variable

Fig.3 Variation of objective function in TSM

Fig.4 2.5D/3D hybrid FEM for flow simulation of multi manifold die

Fig.5 Analysis model : 600 mm width 2 materials 3 layers manifold die (Research Laboratory of Plastics Technology Co., Ltd.)

Material Property (Viscosity)

Fig.6 Strain rate $\dot{\gamma}$ vs. Shear viscosity η_s

Fig.7 Experimental equipment

Fig.8 Experimentally observed layer thickness distribution under current condition

Fig.9 Predicted pressure and outlet flow velocity for multi later T dies under current condition

Fig.10 Numerical result of 3D multi layer flow simulation under current condition

Fig.11 Predicted layer thickness distribution under current condition

・最適化条件解析

Fig.12 Channel clearance adjustment system

17/22

Fig.13 Design variable and objective function of 1st trial optimization

2nd trial optimization

Fig.14 Design variable and objective function of 2^{nd} **trial optimization**

Fig.15 Predicted outlet velocity distribution for mid-layer in optimization

Fig.16 Predicted layer thickness distribution under optimized condition

Fig.17 Experimentally observed layer thickness distribution under optimized condition

□まとめ

・成果要約

1)運用が容易で計算効率に優れたマルチマニフォールドダイ用 最適化技術を開発

Analysis	CPU time
2.5D optimization	30 sec for 10 iterations
3D multi layer flow simulation	900 sec

(Dell Studio XPS 8100, Intel[®] Core[™] i7 CPU 860 @2.80GHz)

2)実測データを利用し、最適化技術の妥当性を検証

