溶融樹脂の定常非等温非ニュートン 純粘性多層流動に関する2.5D FEM 定式化

2.5D FEM formulation for steady non-isothermal non-Newtonian viscous multi-layer flow of polymer melt

2019/6/13

株式会社HASL

○谷藤 眞一郎

Purpose

Practical 2.5D FEM flow simulation for multilayer extrusion dies

3D FEM: Large computational cost, difficult operation

2D FEM: Low resolution

Feed block type multilayer coat hanger die Fig. 1 Multi layer Multi-manifold coat hanger die

Fig. 1 Multi layer extrusion dies

Easy modelling

Small computational storage

- Flexibility of shape representation by modification of thickness information
- **♦** High resolution solution in the thickness direction

□ Break through of 2.5D FEM formulation

4/20

Table 1 Boundary conditions on the interface of multi layer fluid I and II

	Previous formulation	Present formulation
Thermal flow field	Fully developed state	Including under-developing state
Velocity continuity	$\mathbf{V}^{I} = \mathbf{V}^{II}$	
Shear stress continuity	$\eta^I \dot{\gamma}^I = \eta^{II} \dot{\gamma}^{II}$	
Normal stress continuity	$p^{I} = p^{II}$	$-p^{I} + 2\eta^{I} \frac{1}{h^{I}} \frac{Dh^{I}}{Dt} = -p^{II} + 2\eta^{II} \frac{1}{h^{II}} \frac{Dh^{II}}{Dt}$

(*I*, *II* : Layer number, **V** : tangential velocity vector, η : viscosity, $\dot{\gamma}$: shear strain rate, *p*:pressure, *h*:layer thickness)

☐ Mathematical modeling of multilayer flow

5/20

Momentum equation

$$\frac{\partial}{\partial h} \left(\eta^l \frac{\partial v_i^l}{\partial h} \right) = \frac{\partial p^l}{\partial x_i} \text{ for } 0 \le h \le h^l, l = 1 \sim n$$

Shear stress

$$\eta^{l} \frac{\partial v_{i}^{l}}{\partial h} = \frac{\partial p^{l}}{\partial x_{i}} h + A_{i}^{l}$$

velocity

$$v_i^l = \frac{\partial p^l}{\partial x_i} \int_0^h \frac{h}{\eta^l} dh + A_i^l \int_0^h \frac{1}{\eta^l} dh + B_i^l$$

$$p^l$$
:pressure A^l_i, B^l_i :integral constant h^l :thickness $i=1,2,3$ v^l_i :velocity η^l :viscosity

Continuity conditions on the interface

Shear stress continuity

$$\eta^{l} \left. \frac{\partial v_{i}^{l}}{\partial h} \right|_{h=h^{l}} = \eta^{l+1} \left. \frac{\partial v_{i}^{l+1}}{\partial h} \right|_{h=0} \quad \Longrightarrow$$

$$\frac{\partial p^{l}}{\partial x_{i}}h^{l} + A_{i}^{l} = A_{i}^{l+1}$$

Velocity continuity

$$v_i^l\Big|_{h=h^l} = v_i^{l+1}\Big|_{h=0} \implies \frac{\partial p^l}{\partial x_i} \int_0^{h^l} \frac{h}{\eta^l} dh + A_i^l \int_0^{h^l} \frac{1}{\eta^l} dh + B_i^l = B_i^{l+1}$$

Layer-
$$l+1, p^{l+1}, h^{l+1}, v^{l+1}_{i}$$

 l^{th} interface; $l=1 \sim n-1$
Layer- $l, p^{l}, h^{l}, v^{l}_{i}$

Fig.4 Interface of multilayer flow

Table 2 Simultaneous equationsderived by the boundary conditions

Condition	Equation number	Simultaneous conditional equations
Lower wall non-slip	3	$B_i^1 = 0$
Velocity continuity on interface	3(<i>n</i> -1)	$-A_i^l \alpha^l - B_i^l + B_i^{l+1} = \frac{\partial p^l}{\partial x_i} \beta^l$
Shear stress continuity on interface	3(<i>n</i> -1)	$-A_i^l + A_i^{l+1} = \frac{\partial p^l}{\partial x_i} h^l$
Upper wall non-slip	3	$-A_i^n \alpha^n - B_i^n = \frac{\partial p^n}{\partial x_i} \beta^n$
	Total 6n	Ľ
		$lpha^l=\int_0^{h^l}rac{1}{\eta^l}dh,eta^l=\int_0^{h^l}rac{h}{\eta^l}dh$

Normal stress continuity

$$-p^{l} + 2\eta^{l} \frac{1}{h^{l}} \mathbf{V}^{l} \bullet \nabla h^{l} = -p^{l+1} + 2\eta^{l+1} \frac{1}{h^{l+1}} \mathbf{V}^{l+1} \bullet \nabla h^{l+1} \text{ for } l = 1 \sim n-1$$

Constraint

Element thickness :
$$H_e = \sum_{l=1}^n h^l$$

Energy equation

$$\rho^{l} C_{p}^{l} \mathbf{V}^{l} \bullet \nabla T^{l} = \kappa^{l} \Delta T^{l} + \eta^{l} \left(\dot{\gamma}^{l} \right)^{2} \text{ for } l = 1 \sim n$$

 T^l :temperature ρ^l :density C^l_p :heat capacity κ^l :thermal conductivity

SUPG(Streamline Upwind Petrov-Galerkin) FEM discretization

Galerkin FEM discretization for continuity equation

$$S_{\alpha\beta}^{l}p_{\beta}^{l} + Q_{\alpha}^{l} + F_{\alpha}^{l} = 0 \text{ for } l = 1 \sim n$$
Pressure Flux Layer interaction

 α , β : node number (ξ , η): local coordinate *J*: Jacobian ϕ : interpolation function

Theoretical verification of 2.5D FEM formulation 10/20

Fig.5 Steady viscous flow between parallel plate

$$\chi_h^4 = -4\chi_\eta \chi_h^3 - 3(\chi_\eta - \chi_q \chi_\eta)\chi_h^2 + 4\chi_q \chi_\eta \chi_h + \chi_q \chi_\eta^2$$

□ Application of 2.5D FEM formulation

13/20

Modeling of multi layer die

1 Mesh generation for mono layer flow region using template

(2) Append import of mesh information

③ Geometrical representation for multi layer flow region

(4) Mesh generation for multi layer flow region

Test analysis (3-material 3-layer flow analysis in the spiral mandrel die)

2.5D FEM model

3D visualization model

Fig. 12 Multilayer spiral mandrel die

Fig. 13 Pressure distribution

Fig. 14 Pressure distribution in machine direction

Fig. 15 Velocity distribution in thickness direction

Fig. 16 Thickness distribution in machine direction

Conclusions

20/20

成果:

・Hele-Shaw 薄流れの定式化を一般化することで多層押出ダイ内の 未発達状態を含む流動状況及び界面形成状態を効率的に評価可能な 解析法を構築した。

・理論検証解析を通じて解析結果の妥当性を検討した。

<u>今後の課題:</u>

・検証解析の継続。

・2.5D FEM 粘弾性多層流動解析への定式化拡張。

