レオロジーと成形加エ

CAE

〒179-0041 東京都練馬区石神井町3-30-23
石神井ウエスト201
TEL 03-5923-6988 FAX 03-5923-6987
E-mail:tanifuji@hasl.co.jp
URL:http://www.hasl.co.jp

AGENDA	Dagas
◇材料特性のモデリング技術	Page
粘性モデリング	2
粘弾性モデリング	4
◇押出成形CAE	
弾性効果を反映した二次流れとダイスウェル解析	б
フィルム成形プロセスの粘弾性流動解析	14
◇ブロー成形CAE	
成形材料のひずみ硬化性とすべりを考慮した真空成形解析	29
◇スクリュCAE	
- 軸スクリュ内の液滴分型/今休解析	35

◇材料特性のモデリング技術

粘性モデリング

高分子溶融体の粘度は、温度及びひずみ速度に依存して変化する。 その特性を正確にシミュレーションで考慮することが重要あり、現状、粘 度特性の表現に適した様々な粘度モデルが提案されている。

Carreau model: フローカーブのゼロせん 断領域とずり流動領域の 両特性を表現可能。

粘弾性モデリング

2

1	動粘度マスタ-	-カーブの作	成
_			

③ 動粘度フィットによる離散型緩和スペクトルの計算値の補正

◇押出成形CAE

弾性効果を反映した二次流れとダイスウェル解析

Contraction flow

Die swell

出典: D. B. Boger and H. Nguyen, Polym. Eng. Sci., 18, 1038 (1978)

出典: A. S. Lodge, *Elastic Liquids*, Academic Press, New York (1964)

粘弾性モデルの定量化に際して重要になる第一/第二法線応 力差を考慮可能 第一/第二法線応力差係数を粘度モデルと同様、代数式でフィット可能 粘性流体解析結果として算出される変形速度テンソルDを用いて、法線応 力差が評価されるため、計算負荷が小さい(粘性流体解析と同等)

計算安定性に優れる(但し、CEFモデルは厳密な粘弾性モデルでは無い)

CEFモデルを利用した断面急変流れとダイスウェル解析結果

Encapsulation flow

Down stream

角柱流路を流れる溶融樹脂断面内の界面変形挙動

Down stream _____ン Tear drop断面流路を流れる溶融樹脂断面内の界面変形挙動

出典:Eexprimental data: Viscoelastic Flow Effects in Multilayer Polymer Coextruison / by Joseph Dooley, Ph-D thesis, Technische Universiteit Eindhoven,2002

第二法線応力差がこれらの

包込シミュレーションにおける界面追跡法

下流側に向けての界面観測位置の変化を樹脂 到達時間の差と見なし、非定常の界面追跡法で あるVOF(Volume Of Fluid)法を適用

フィルム成形プロセスの粘弾性流動解析

目的: メソ/マクロスケールシミュレーション統合化技術を利用した コートハンガーダイ内樹脂流動の粘弾性応力分布の評価

Molecular Dynamics Micro-scale simulation

> <10⁻⁷m <10⁻⁷sec

Rheology Meso-scale simulation

 $10^{-7} \sim 10^{-4} \text{m}$ $10^{-3} \sim 10^{3} \text{sec}$ Polymer processing Macro-scale simulation

10⁻³m<

0.1sec<

非線形粘弾性構成方程式 (Multi mode Exponential type PTT model):

$$\begin{array}{l} \nabla \\ \mathbf{\tau}_{i} + f_{GS}(\mathbf{\tau}_{i}, \mathbf{D}) + \lambda(\mathbf{\tau}_{i})^{-1} \bullet \mathcal{T}_{i} = 2G_{i}\mathbf{D}, \\ f_{GS}(\mathbf{\tau}_{i}, \mathbf{D}) = \xi_{i}(\mathbf{D} \bullet \mathbf{\tau}_{i} + \mathbf{\tau}_{i} \bullet \mathbf{D}), \ \lambda(\mathbf{\tau}_{i})^{-1} = \frac{1}{\lambda_{i}} \left(1 + \frac{\varepsilon_{i}}{G_{i}} trace(\tau_{i}) \right) \mathbf{I} \\ \hline \tau_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{t} - \mathbf{\tilde{F}}_{i} \mathbf{O} \text{ high the D} \mathbf{T}_{i} \mathcal{T}_{i} : \mathbf{T}_{i} : \mathbf{T}_{i} : \mathbf{T}_{i} = \mathbf{T}_{i} \mathbf{T}_{i}$$

を利用し、従来の純粘性解析では表現されない法線応力を定量化。

D

材料物性

直鎖ポリスチレン(Linear-PS) & 分岐ポリスチレン(Branch-PS)

両者は、せん断粘度が、ほぼ等しく、伸長粘度 と法線応力差が大きく異なる。 動粘度(G',G''), せん断粘度, 過渡一軸伸長粘度,

第一法線応力差をNAPLESを利用して予測。

成形(計算)条件

流量	20kg/h
流入温度	220°C
ダイ壁面温度境界条件	環境温度200°C
	熱伝達係数300W/m²/K

せん断応力τと第一法線応力差N₁を計算することで、スウェル比の簡易予測が可能。

解析モデル

Case	緩和弾性率 (Pa)	緩和時間(s)	Giesekus αパラメータ
0	_	-	-
1	100000.0	0.01	
2	10000.0	0.1	0.5
3	1000.0	1.0	
4	10000.0	0.1	0.1
5	10000.0	0.1	0.9

Case0は粘性解析(η₀=1000.0Pa・sを採用)

非線形粘弹性構成方程式 (Multi mode Giesekus model):

$$\begin{split} \lambda_{k} & \left(\frac{\partial \tau_{xx}^{k}}{\partial t} + u \frac{\partial \tau_{xx}^{k}}{\partial x} + v \frac{\partial \tau_{xx}^{k}}{\partial y} - 2 \left(\frac{\partial u}{\partial x} \tau_{xx}^{k} + \frac{\partial u}{\partial y} \tau_{xy}^{k} \right) \right) + \tau_{xx}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{xx}^{k})^{2} + (\tau_{xy}^{k})^{2}) = 2G_{k}\lambda_{k} \frac{\partial u}{\partial x}, \\ \lambda_{k} & \left(\frac{\partial \tau_{xy}^{k}}{\partial t} + u \frac{\partial \tau_{xy}^{k}}{\partial x} + v \frac{\partial \tau_{xy}^{k}}{\partial y} - \left(\frac{\partial v}{\partial x} \tau_{xx}^{k} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \tau_{xy}^{k} + \frac{\partial u}{\partial y} \tau_{yy}^{k} \right) \right) + \tau_{xy}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{xx}^{k} \tau_{xy}^{k} + \tau_{xy}^{k} \tau_{xy}^{k}) = G_{k}\lambda_{k} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \\ \lambda_{k} & \left(\frac{\partial \tau_{yy}^{k}}{\partial t} + u \frac{\partial \tau_{yy}^{k}}{\partial x} + v \frac{\partial \tau_{yy}^{k}}{\partial y} - 2 \left(\frac{\partial v}{\partial x} \tau_{xy}^{k} + \frac{\partial v}{\partial y} \tau_{yy}^{k} \right) \right) + \tau_{yy}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{xy}^{k})^{2} + (\tau_{yy}^{k})^{2}) = 2G_{k}\lambda_{k} \frac{\partial v}{\partial y}, \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + u \frac{\partial \tau_{zz}^{k}}{\partial x} + v \frac{\partial \tau_{zz}^{k}}{\partial y} - 2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \tau_{yy}^{k} \right) \right) + \tau_{zz}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{zz}^{k})^{2} - (\tau_{yy}^{k})^{2}) = 2G_{k}\lambda_{k} \frac{\partial v}{\partial y}, \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + u \frac{\partial \tau_{zz}^{k}}{\partial x} + v \frac{\partial \tau_{zz}^{k}}{\partial y} - 2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \tau_{yy}^{k} \right) \right) + \tau_{zz}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{zz}^{k})^{2}) = -2G_{k}\lambda_{k} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + u \frac{\partial \tau_{zz}^{k}}{\partial x} + v \frac{\partial \tau_{zz}^{k}}{\partial y} + 2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) \\ \tau_{zz}^{k} & \tau_{zz}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{zz}^{k})^{2}) = -2G_{k}\lambda_{k} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + v \frac{\partial \tau_{zz}^{k}}{\partial y} \right) \\ \tau_{zz}^{k} & \tau_{zz}^{k} + \frac{\alpha_{k}}{G_{k}} ((\tau_{zz}^{k})^{2}) = -2G_{k}\lambda_{k} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + \frac{\partial \tau_{zz}^{k}}{\partial t} \right) \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + \frac{\partial \tau_{zz}^{k}}{\partial t} \right) \\ \tau_{zz}^{k} & \tau_{zz}^{k} + \frac{\partial \tau_{zz}^{k}}{\partial t} \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} + \frac{\partial \tau_{zz}^{k}}{\partial t} \right) \\ \lambda_{k} & \left(\frac{\partial \tau_{zz}^{k}}{\partial t} \right) \\ \lambda_{$$

$$G_k$$
:モード k の緩和弾性率, λ_k :モード k の緩和時間, α_k :モード k の物質パラメータ

解析結果

Chill roll位置フィルム肉厚計算結果の比較

◇ブロー成形CAE

成形材料のひずみ硬化性とすべりを考慮した真空成形解析 解析モデル

ケーススタディー覧

Case	材料モデル	シート/金型 接触条件
1	Newtonian	固着
2	G'Sell-Jonas	固着
3	G'Sell-Jonas	滑り

真空成形材料のレオロジー特性モデル

*)参考文献 G'SELL, C. & JONAS, J.: Determination of the plastic behaviour of solid polymers at constant true strain rat. In: Journal of Materials Science 14 (1979), pp. 583-591

Peek nano-composite SSカーブのG'Sell-Jonas モデルフィット例

写真出典: Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Volume 22, No. 1, ISSN 1726-9679 ISBN 978-3-901509-83-4, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2011

解析結果

Case2:G'Sell-Jonas nonslip

Case3:G'Sell-Jonas slip

フィルム形状と肉厚分布の時間変化(アニメーション)

◇スクリュCAE

二軸スクリュ内の液滴分裂/合体解析

液滴の分裂状態を規定するキーパラメータ: Capillary number

$$Ca = \frac{\eta_m \dot{\gamma}}{\sigma / R} = \frac{Shear \ stress}{Surface \ tension}$$

$$\eta_m$$
:マトリクス粘度
 $\dot{\gamma}$:マトリクスひずみ速度
 σ :表面張力係数
 R :液滴半径

*)出典:H. P. Grace: Eng. Found. Res. 3rd Conference on Mixing, Andover(1971)

**)出典:LIU,H., XU, X.M., GUO, S.D.,: Chinese Journal of Chemical Engineering, 15(1),1-5(2007)

臨界キャピラリー数に対するBruijnの経験則評価式*):

*)出典:R. A. De Bruijn, PhD thesis, Eindhoven University of Technology, TheNetherlands(1989)

規格化キャピラリー数による液滴状態の分類*)

$C^* = Ca / Ca_{crtit}$	液滴の状態
$C^* < 0.1$	液滴は、変形しない。
$0.1 < C^* < 1$	液滴は、変形するが、分裂しない。
$1 < C^* < 4$	液滴は、変形し、2つに分裂する。
$4 < C^{*}$	液滴はフィラメント化し、その後、 複数に分裂する。

注)フィラメント化した後に分裂する液滴径は、粘度比に依存し、 0.1<λ<1の場合は均一、1<λの場合は不均一になる。**)

*)参考文献: M.A. Huneault, Z. H. Shi, and L.A. Utracki: *Polym. Eng. Sci.* **35**(1),115(1995) **)参考文献: S. Maindarkar, A. Dubbleboer, and J. Meuldijk, H. Hoogland, and M. Henson: *Polym. Eng. Sci.* **118**,114(2014)

Morphological Evolution Model^{*})

液滴の単位体積当たりの分裂/合体に伴う形状(半径)変化を定量化する 現象論的計算モデル

*)参考文献: S. Maindarkar, A. Dubbleboer, and J. Meuldijk, H. Hoogland, and M. Henson: *Polym. Eng. Sci.* **118**,114(2014)

$$\frac{DR}{Dt} = 0 \qquad \text{for } C^* < 1$$
$$R(t + \Delta t) = 2\sqrt{\frac{2}{3}}R(t)\gamma(t:t + \Delta t)^{-\frac{1}{2}} \quad \text{for } 4 < C^*$$

無次元パラメータ t_b^{*} は液滴分裂の実験観測結果より決定

 $\log_{10}(t_b^*) = 0.3396 \log_{10}(\lambda) + 1.9604$

完全噛合型同方向回転平行 (金沢大) O杉山武雅, (ハッスル) 谷藤眞一郎, 二軸押出機中の樹脂充満率の測定 (カネカ) 村田隼一, 辻村勇夫, (金沢大) 瀧健太郎 プラスチック成形加工学会第27回年次大会発表資料(A-201,2016)

スクリュー引き抜き実験結果(白い領域は樹脂が存在している)

フライトスクリューの押し側の充満状態が良好に表現されている。

背圧Ph:2(MPa)

背圧Ph:1 (MPa)

充満率分布

