HyperBlow(Ver.6.0.0) 改良成果資料(発表用ダイジェスト版)

HASL/Hyper Blow (Ver.6.0.0) Copyright© 2013- Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

2018/11/15 株式会社HASL

- ① 解析結果ポスト処理項目の追加
- ② 要素ひずみ依存型 Adaptive remeshing 機能
- ③ 金型メッシュの最適化肉厚情報及び温度情報の領域設定機能

① 解析結果ポスト処理項目の追加

🔛 Contour Control	
解析結果ファイル名 C:¥Users¥tanif_000¥Desktop¥20187	プロジェクト¥20185
コンターコントロールパネル Output ID	_
11: Time = 9.950002 内容	~
	~
1:肉厚分布 2:流速分布 3:温度分布	_

既往コンターポスト処理項目

$$oldsymbol{D}_n(t) = \mathbf{x}_n(t) - \mathbf{x}_n(0) : 節点変位ベクトル$$
 $\mathbf{x}_n(0): 節点初期座標$
 $\mathbf{x}_n(t) : 時刻 t の節点座標$

新規ポスト処理項目出力例

🖳 Calculation Control Form	– 🗆 X	Adaptive remesh チェックボックスをチェック状態と すると、ひずみ判定値(Strain criteria)を超えた計
計算時間パラメータ 最大計算サイクル数 [100 一定時間刻み 0.2 sec 解析種別 ・ ・ 定時間刻み 0.2 sec 	ヤコビアンチェックストップ つ ON OFF 10 ・ Adaptive remesh 好触判に定閾値 100 ・ 3Dソリッドリゾーニング 命記シリッド要素 Parison VS Parison Collision Judgement 温度計算 層分割数 10 外気成形茶材間表面温度境界条件 熟伝達係数 0.03	算要素を自動細分化
清りパラメータ スリップ係数 1 スリップLost処理 スリップ接触判定上限 ● 拘束 100 ○ 自由	環境温度 50 外気成形素材間内面温度境界条件 熱伝達係数 0.03 環境温度 50 金型成形素材間温度境界条件 熱伝達係数 0.3 環境温度 50	Adaptive remeshing
接触判定許容誤差 Penalty数 1E-05 1 ファイル名 Sheetremesh	重力パラメータ Gx 0 Gy 0 Gz 0 Gz 0 ぼ行ウインドウ自動クローズ 保存 閉じる	

Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

③ 金型メッシュの最適化肉厚情報及び温度情報の領域設定機能

表.最適化肉厚情報及び温度情報設定法の比較

	既往	新規
肉厚最適化機能	最適化肉厚を均一設定	
温度計算機能	金型温度を均一設定 あるいはプロパティ毎に 均一設定	既任機能に加えて金型 メッシュ毎に分布設定

パリソン初期肉厚分布の最適化解析例

パリソン 初期肉厚5mm均一

最適化計算条件設定パネル
◉ 均一設定
目標肉厚(mm) 1
○ 金型設定肉厚
最適化反復計算回数 20
最適化緩和係数 0.25

最終成形品最適化肉厚: 1 mm均一設定 既往

① 金型メッシュ情報のインポート

(当設定例では、x方向に対して0.5~1.5 mmの線形最適化肉厚分布を設定)

